Intervalos
sábado, 17 de septiembre de 2011
Intervalos
Un intervalo es un conjunto de números que se corresponden con los puntos de una recta o segmento, en el que se encuentra un ordenamiento interno entre ellos. Los intervalos son el espacio que se da de un punto a otro en el cual se toman en cuenta todos los puntos intermedios. Por ejemplo: si en una recta se tiene un intervalo:[-2,2], en este espacio se encuentran los números -2,-1,0,1 y 2, entre infinitos otros números reales. Aquí se encuentra un intervalo, ya que el espacio abarca una serie de números consecutivos que se corresponden entre sí.
Existen dos notaciones principales. En un caso se utilizan corchetes y corchetes invertidos: por ejemplo: [a,b] (a y b están incluidos en el intervalo), y ]a,b[ (a y b están excluidos del intervalo). En la otra notación se utilizan corchetes y paréntesis: por ejemplo: [a,b] (a y b están incluidos en el intervalo), y (a,b) (a y b están excluidos del intervalo). Para indicar que uno de los extremos está excluido y el otro incluido, se combinan los símbolos correspondientes de la notación que se esté usando: por ejemplo: (a,b] (a excluido, b incluido). (Ver más ejemplos en la tabla debajo).
Gráficamente, la notación con corchetes y corchetes invertidos puede entenderse y recordarse de esta manera:
Definición de intervalo
Se llama intervalo al conjunto de números reales comprendidos entre otros dos dados: a y b que se llaman extremos del intervalo.
Intervalo abierto
Intervalo abierto, (a, b), es el conjunto de todos los números reales mayores que a y menores que b.
(a, b) = {x / a < x < b}
Intervalo cerrado
Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.
[a, b] = {x / a ≤ x ≤ b}
Intervalo semiabierto por la izquierda
Intervalo semiabierto por la izquierda, (a, b], es el conjunto de todos los números reales mayores que a y menores o iguales que b.
(a, b] = {x / a < x ≤ b}
Intervalo semiabierto por la derecha
Intervalo semiabierto por la derecha, [a, b), es el conjunto de todos los números reales mayores o iguales que a y menores que b.
[a, b) = {x / a ≤ x < b}
Cuando queremos nombrar un conjunto de puntos formado por dos o más de estos intervalos, se utiliza el signo (unión) entre ellos.
Clasificación
Se pueden clasificar los intervalos según sus características topológicas (intervalos abiertos, cerrados y semi abiertos) o según sus características métricas (su longitud: nula, finita no nula, o infinita):
Existen dos notaciones principales. En un caso se utilizan corchetes y corchetes invertidos: por ejemplo: [a,b] (a y b están incluidos en el intervalo), y ]a,b[ (a y b están excluidos del intervalo). En la otra notación se utilizan corchetes y paréntesis: por ejemplo: [a,b] (a y b están incluidos en el intervalo), y (a,b) (a y b están excluidos del intervalo). Para indicar que uno de los extremos está excluido y el otro incluido, se combinan los símbolos correspondientes de la notación que se esté usando: por ejemplo: (a,b] (a excluido, b incluido). (Ver más ejemplos en la tabla debajo).
Gráficamente, la notación con corchetes y corchetes invertidos puede entenderse y recordarse de esta manera:
Definición de intervalo
Se llama intervalo al conjunto de números reales comprendidos entre otros dos dados: a y b que se llaman extremos del intervalo.
Intervalo abierto
Intervalo abierto, (a, b), es el conjunto de todos los números reales mayores que a y menores que b.
(a, b) = {x / a < x < b}
Intervalo cerrado
Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b.
[a, b] = {x / a ≤ x ≤ b}
Intervalo semiabierto por la izquierda
Intervalo semiabierto por la izquierda, (a, b], es el conjunto de todos los números reales mayores que a y menores o iguales que b.
(a, b] = {x / a < x ≤ b}
Intervalo semiabierto por la derecha
Intervalo semiabierto por la derecha, [a, b), es el conjunto de todos los números reales mayores o iguales que a y menores que b.
[a, b) = {x / a ≤ x < b}
Cuando queremos nombrar un conjunto de puntos formado por dos o más de estos intervalos, se utiliza el signo (unión) entre ellos.
Clasificación
Se pueden clasificar los intervalos según sus características topológicas (intervalos abiertos, cerrados y semi abiertos) o según sus características métricas (su longitud: nula, finita no nula, o infinita):
Suscribirse a:
Entradas (Atom)